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ABSTRACT

The representation of hydrogen-bonding contribution generally involves the number
of hydrogen-bonding pair that requires implicit computation when more than one type
of bonds is present. To reduce the computational burden associated with the solution of
a set of nonlinear implicit equations, a free energy expansion method is proposed for
Veytsman statistics in the present study. Based on the normalized Veytsman statistics of
the present authors, the Helmholtz free energy for association was expanded around a
reference value. The lattice-compatible expanded Veytsman term was then combined
with the explicit non-random lattice-fluid model of present authors to obtain equations
for pressure and chemical potential. Calculated vapor-liquid equilibria using the
expansion were found to closely agree with rigorous calculation results and with
experimental values for alkane-alkanol mixtures.

KEY WORDS : akane-akanol, association, equation of state, hydrogen-bonding,
lattice fluid model, vapor-liquid equilibria



1. INTRODUCTION

Phase equilibria and thermophysical properties involving molecules with specific
interactions are of importance in many industrial systems. However, the equation of
state approach to such systems has long been limited to vapor phase [1]. Recent
interests in equations of state approach have been focused on studies applicable to both
vapor and liquid phase. Among the most successful methods are the statistical
associating fluid theory (SAFT) [2] and hydrogen-bonding non-random lattice fluid
theory (NLF-HB) [3]. In Helmholtz free energy expressions, both theories have
association terms that are implicit for mixtures with more than one type of hydrogen
bonds.

The non-association part of NLF-HB was derived from the Guggenheim combinatory
[4] and made explicit by expanding Helmholtz free energy around the reference
athermal solution [5,6]. The hydrogen-bonding contribution was derived from Veytsman
statistics [ 7] that are compatible with lattice statistics. Recently Lee et a. [8] pointed out
that Veytsman contribution still has non-zero contribution even if the hydrogen-bonding
free energy tends to zero and proposed a normalization scheme. Furthermore they
proposed a method for the explicit evaluation of hydrogen-bonding pairs in the
Veytsman terms. This evaluation method could be very helpful in removing the
numerical difficulties associated with the solution of implicit equations for Veytsman
terms. Yet, a more consistent method would be based on an expansion method of
Helmholtz free energy. In this study, we develop the free energy expansion scheme for
the problem with one type of hydrogen bonds and explore the consequences for
mixtures with aliphatic alcohols.

2. Derivation

We consider a ¢ component mixture in the lattice of fixed cell volume V4 and the
coordination number z. Component i in a c-component mixture has r; segments. The
surface area parameter g of component i is related by the relation 2(ri-1)=z(r;-q;). The
interaction energy between segments of componentsi and j is &;. A segment may be a
hydrogen donor or acceptor. The number of hydrogen donor groups of type k in species
i isdy and the number of acceptor groups of type | in speciesj is a/. The total number of
donor types is m and that of acceptor types is n. The hydrogen-bonding free energy is
A,

The lattice configurational partition function is assumed as the product of physical and
hydrogen-bonding contributions.

Q° =Q505, (2)
The physical contribution was derived from Guggenheim combinatory and made
explicit by expansion around the reference athermal solution and by retaining terms up
to the second order [5,6].

The implicit formulation of the chemica contribution from Veytsman statistics [7]
was proposed by Lee et al. [3]. The total number of donor groups of type k (N¢) and
that of acceptor groups of types| (N4 ) are given by
Ng =S dN, N =3 alN, 2)

We also define the total number of donor-acceptor pair (Nug), unpaired donors (Nig

andHlBanai red acceptors (No,-HB) as functions of the number of i-j hydrogen bond pair
(Njj ™).
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Npg = ZimZTNFB ' NigB = Ncij - ZT NinB ' NonB = Na{ - Z,m NinB ©)
According to the normalized Veytsman statistics proposed later by Lee et a. [8], the

hydrogen-bonding contribution is written as,
N Nygo m N HB() n N HBOl m n N HBO|

Q'(;B - NNHB |_| NllgB! |_| NHB! ||_| |_| NIJHB! eXp( BN ) (4)
where,
N, :NO+ZiC=1riNi 5)

The maximization condition leads to

NinB N, =N NonB eXp(_BAjHB)

:‘:lNgB)exp(-ﬁA;*B) (i=1,2,..m, j=1,2,..,n) (6)
The hydrogen-bonding contribution to Helmholtz free energy is

BAGB =-InQjg

=(Ny -5 NEBY(N -

n
=(Nps = Npgo)(In N, +1)+Z(NHBInNHB—NHBOInNHB°)+Z(N&'BInN B NGBO In NHEO)
|

+zm En (BAF® N + N In N - N800 N80
b (7)
where quantities with superscript or subscript HBO come from the solution of Eq 5 with
" =0.
For the explicit formulation of the chemical or hydrogen-bonding contribution, we
expand Helmholtz free energy around a reference free energy.

P H mn mn |:| P

HB __ HBR HB HBR) AHB HBR
o = Best ZZH@ AJ ZZZZ@ HaAlHB (Al -A X —A ) (8)
The subscript HB |nd|cates the hydrogen-bonding contrlbutlon for the system and the
superscript HB the contibution for donor-acceptor pairs. Subscript and superscript HBR
means the value at the reference state. The reference Helmholtz free energy is obtained
from Eq 6 by replacing quantities with superscript or subscript HB by HBR that are

obtained from the solution of Eq 5 by setting A" to a constant reference value A™"

independent of donor or acceptor type. As shown in the appendix N;"® or N;"®Ris
readily obtained explicitly.

The pressure of system and the chemical potential of component i also can be parted
into the additive physical and chemical contributions,
P=F +Rg )

Ho= (10)

where the subscript and superscript P denotes the physical contribution. The physical
contribution of Helmholtz free energy is presented from the NLF model of You et al.
[5,6]. For the ssmplest system with one donor type and one acceptor type the pressure
for chemical part can be derived by the standard method.
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V, B v, eXp(BA”BR)+ Njo™™ + N
N11 N eXp(BAHBR) + ZNHBRNH + (N o +N HBR)(NH N HBRB) (AiHB - AHBR)ZE (11)
(N eXp(BAHBR)+ NHBR + NHBR 2 1 H
where,
p=Yr.p. A=NG/N (12
Vigr (NHBR HBO)/ Zic-l Ni d (13)
Ny, == NI, Bexp(BA™) /N, exp(Ba™) + N + N™) (14

The chemical part in Eq (10) is derived by well- known relation and expressed as

e PAG E _AARH  _PBARH oV E
E oN, “Hon, N Hoav G PN N
NN SN e )
Nio Noy N, exp(BA™") + Ny + Ngy
(dli +aiXNr exp(BATR) + NlHOBR + NHBR N +ﬁ\l 3 exp( BA"ER) - 2N, @d NHBR +aiNlHOBR)
(N exp(BATER) + NHBR + NHBR)2

XB( HlB _ AHBR)2 (15)

Egs.(11) and (15) appear complicated, but are advantages over rigorous NLF-HB EOS
in computation. The derivatives in Eq (8) are evaluated at the reference state and the

number of hydrogen bond balance equations at reference state, Eq (6), are readily
solved explicitly regardless of the number of donor type and acceptor type.

dIn

3. Results and Discussions
We set the coordination number z at 10 and the unit lattice volume V, at

9.75cm*mol. The hydrogen bonding Helmholtz free energies are defined by following

equation.
AHBR :U HBR _TSHBR (16)
He =Ui;"B —TSIJ-HB (17)

The reference values are set to U "™ = —20.3 kJ/mol and S™Rf= —21.55 J/mol K.

U;®=-25.1 kJ/mol from Renon and Prausnitz [9] and Si®= -26.5 J/mol K from

Panayiotou [10] for 1-alkanols. Two molecular parameter, r; and ¢, are fitted to
saturated liquid density and vapor pressure data for subcritical region and pressure-
volume isotherm data for supercritical region. The temperature dependency is correlated

by the following form [11],

=1, +r,(T=T,)+r[TInT,/T)+T-T,] (18)

g,=e +e (T-T)+e[TInT,/T)+T-T,] (19)
where the reference temperature, T, is 298.15 K. Temperature coefficients in Egs.(18)

and (19) for 1-akanols and alkanes are listed in Table 1. For mixtures, an interaction
parameter between different two moleculesis defined by



€1 = (‘911‘922 )0'5 (1-25) (20)
and isfitted to binary VLE data.

Fig. 1 shows comparisons by four different calculations. One is the result of NLF
calculations in which hydrogen-bonding consideration is not included. The result is seen
inferior to the other calculations with hydrogen-bonding corrections. The second one is
the result of rigorous evaluation of hydrogen-bonding effects as proposed by Yeom et
a. [3] and by Lee et al. [8]. These two methods give essentially identical results. In the
third method, the number of hydrogen bonds is explicitly evaluated. The last one is by
the present expansion of Helmholtz free energy. The present method is seen to give
essentially the same results as the rigorous methods. It is also a more consistent method
in that both physical and chemical terms are expanded in Helmholtz free energy and
terms up to the second order are retained. When compared with data, pentanol-pentane
systemin Fig. 1 gives good results.

Results of isothermal P-y calculations by the present free energy expansion method
for acohol-alkane mixture are summarized in Table 2. N-Hexane and methanol system
shows somewhat large deviations. Ethanol and n-hexane mixture shows alarge pressure
deviation, but the system pressure is very low. Other than these systems, the results are
seen generally acceptable.

4. Conclusion

In the non-random lattice fluid hydrogen-bonding model, Veytsmann statistics defines
a set of nonlinear equations to solve for the number of hydrogen bonds when more than
one type of donor-acceptor pairs are present. To circumvent the difficulties associated
with the solution, afree energy expansion method was proposed for explicit solutionsin
this study.. When applied to vapor-liquid equilibria, the expansion method was found to
give good approximation to the rigorous solution and to describe the phase equilibrium
behavior accurately in most cases for alkane-alkanol mixtures.
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List of symbols

A Helmholtz free energy

a d number of acceptor groups and donor groups in a molecule,
respectively

Na, Ny number of acceptor groups and donor groups in system,
respectively

N; number of sitein lattice

No number of holein lattice

r segment number

VH unit lattice volume

z coordination number

Greeks letters

£ interaction energy parameter

A binary interaction parameter

u chemical potential

VHB defined by eq.(13)
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Superscripts
C

HB

HBO

HBR

i,k
Subscripts
HB

HBO

HBR

i,k

ij, K

partition function

configurationa property

chemical contribution by HB

zero HB Helmholtz free energy state value
reference HB Helmholtz free energy state value
index for component, donor group or acceptor group

chemical contribution by HB

zero HB Helmholtz free energy state value
reference HB Helmholtz free energy state value
index for component, donor group or acceptor group
interaction pair



References

[1] J.G. Hayden and J.P. O’ Connell, Ind. Eng. Chem. Process Des. Dev., 14 (1975) 221.
[2] W.G. Chapman, K.E. Gubbins, G. Jackson, and M. Radosz, Ind. Eng. Chem, Res,,
29 (1990) 1709.

[3] M.S. Yeom, K.-P. Yoo, B.H. Park, and C.S. Lee, Fluid Phase Equilib. 158 (1999)
143.

[4] E.S. Guggenheim, Mixtures, Clarendon Press, Oxford, 1952.

[5] S.S. You, K.-P. Yoo, and C.S. Lee, Fluid Phase Equilib. 93 (1994) 193.

[6] S.S. You, K.-P. Yoo, and C.S. Lee, Fluid Phase Equilib. 93 (1994) 215.

[7] B.A. Veytsman, J. Phys. Chem. 94 (1990) 8499.

[8] C.S. Lee, K.-P. Yoo, B.H. Park, and J.W. Kang, J. Phys. Chem. Submitted.

[9] H. Renon, and J.M. Prausnitz, Chem. Eng. Sci. 22 (1967) 299.

[10] C. Panayiotou, J. Phys. Chem. 92 (1988) 2960.

[11] H.V. Kehiaian, J.PE. Grolier, and G.C. Bebson, J. Chem, Phys. 75 (1978) 1031.
[12] A.-D. Leu, D.B. Robinson, S.Y.-K. Chung, and C.-J. Chen, Can. J. Chem. Eng., 70
(1992) 330.

[13] N. Ishii, J. Soc. Chem. Ind. Jan. 38 (1935) 659.

[14] M. Ronc and G.R. Ratcliff, Can. J. Chem. Eng., 54 (1976) 326.

[15] N.A. Smirnovaand L.M. Kurtynina, Zh. Fiz. Khim., 43 (1969) 1883.

[16] A. Kumar and S.S. Katti, Indian J.Chem., 19A (1980) 795.

[17] S.G. Sage and G.A. Ratcliff, J. Chem. Eng. Data 21 (1976) 71.

[18] M. Scheller, H. Schuberth, and H.G. Koennecke, J. Prakt. Chem., 311 (1969) 974.
[19] A.M. Kinyukhin, T.M. Lesteva, N.P. Markuzin, and L.S. Budantseva, Prom-st.
Sint. Kauch. 7 (1982) 4.

[20] S. Ernatova, J. Linek, and |. Wichterle, Fluid Phase Equilib., 74 (1992) 127.



Appendix
Nygr IS obtained by solving quadratic equation after summing Eq (6) ini andj .

éw exp(BA™R) + N, +N, {(Nrexp(ﬁAHBR)+Na+Nd)2—4NaNd}”2§(A1)

By summing both sides of Eq (6) once in i and once in j we get expressions for
Z N/ and z LNGER

N, exp(BA™™) S " NF™ = (N, = Nyge)(N! = 57 NSEF)

Ny (A2)

N, exp(BA™) ST NI = (NG = 5T NEF)(N, = Nygr) (A3)

Egs. (A2) and (A3) are simultaneously rearranged in terms of Nuygr and readily

substituted into Eq (6) then we obtain the following equation.

NiJHBR — N(ii Ne{ — NzBRNHBR %_ Ny = Nygr E(A4)
N, exp(BA™") N - &XP(BAT) + N, = Nyge

N, eXp(BAHBR) + Ny = Npgr E
These expressions give N;"®° by setting A" =0 and Nygr = Niigo




Table 1. Temperature coefficients of molecular parameters

Chemicals e, & € ra I re Range(K)
Propane 84.774 0.0161 -0.1399 6.827 -0.0005 0.0077 115-345
n-Pentane 94.484 0.0369 0.0189 9.924 -0.0021 0.0012 303-443
n-Hexane 97.278 0.0313 -0.0245 11.460 -0.0015 0.0061 273-473
n-Heptane 99.068 0.0352 -0.0187 13.035 -0.0019 0.0060 273-513
n-Decane 101.689 0.0529 0.0125 17.805 -0.0034 0.0057 368-598
M ethanol 113.282 0.0156 -0.1085 3.754 0.0009 0.0006 215-465

Ethanol 106.213 0.0146 -0.0544 5.357 0.0002 0.0034 239-489
1-butanol 107.495 0.0006 -0.0914 8.469 0.0014 0.0054 275-505
1-pentanol 107.165 0.0337 -0.0256 10.020 -0.0001 0.0048 295-565
1-octanol 108.068 0.0325 -0.0346 15.061 0.0012 0.0099 313-573




Table 2. Comparison of results with experimental data

System T(K) M2 AADP"  AADY’  References
Methanol 310.70 0.060 211 0.0259 [12]
+ propane
, Ethanol 203.15 0.033 6.18 0.0116 [13]

n-hexane
1-butanol 303.15 0.019 0.10 0.0017 [14]

+ n-pentane
1-butanol 208.15 0.024 0.10 0.0295 [15]
+ n-hexane
1-butanol 348.15 0.033 2.89 0.0398 [16]
+ n-heptane
1-pentanol 303.15 0.017 0.10 0.0144 [14]
+ n-pentane
Lpentanol 555 15 0.017 0.07 0.0057 [17]
+ n-hexane
n-Hexane
cmethangl | 33315 0.071 5.27 0.0676 [18]
1-octanol 313.15 0.008 1.27 0.0570 [19]
+ n-heptane
n-Decane
+ 1-butanol 38.15 0022 . oo =

"AADP = (100/N)§ '|R™ =R*® [/R™®  "AADY =(UN) S 'Y =Y /Y



Figure captions

Figure 1. Comparison of experimental datawith calculated NLF and NLF-HB EOSs for
1-pentanol + n-pentane system at 303.15 K
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Figure 1. Comparison of experimental data with calculated NLF and NLF-HB EOSs
for 1-pentanol + n-pentane system at 303.15 K



